
Author‘s Manuscript SI - Public Access

Published in final edited form as:

Guzman, H. V., Tretyakov, N., Kobayashi, H., Fogarty, A. C., Kreis, K., Krajniak, J., Junghans,
C., Kremer, K., Stühn, T. (2019). ESPResSo++ 2.0: Advanced methods for multiscale
molecular simulation. Computer Physics Communications, 238, 66-76.
doi:10.1016/j.cpc.2018.12.017.

Link to formal publication: https://doi.org/10.1016/j.cpc.2018.12.017

Supplemental Information

ESPResSo++ 2.0: Advanced
methods for multiscale molecular

simulation
Guzman, H. V., Tretyakov, N., Kobayashi, H., Fogarty, A.
C., Kreis, K., Krajniak, J., Junghans, C., Kremer, K., Stühn,
T.



M
ax

 P
la

nc
k 

In
st

itu
te

 fo
r P

ol
ym

er
 R

es
ea

rc
h 

– 
Au

th
or

’s 
M

an
us

cr
ip

t

ESPResSo++ 2.0: Advanced methods for multiscale
molecular simulation

Horacio V. Guzmana, Nikita Tretyakova, Hideki Kobayashia, Aoife C. Fogartya,
Karsten Kreisa, Jakub Krajniakb, Christoph Junghansc, Kurt Kremera, Torsten

Stuehna,∗

aMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
bKU Leuven Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven, Belgium

cComputer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los
Alamos, NM 87545, USA

Abstract

Molecular simulation is a scientific tool used in many fields including material sci-
ence and biology. This requires constant development and enhancement of algorithms
within molecular simulation software packages. Here, we present computational tools
for multiscale modeling developed and implemented within the ESPResSo++ pack-
age. These include the latest applications of the adaptive resolution scheme, the hy-
drodynamic interactions through a lattice Boltzmann solvent coupled to particle-based
molecular dynamics, the implementation of the hierarchical strategy for equilibrating
long-chained polymer melts and a heterogeneous spatial domain decomposition.

The software design of ESPResSo++ has kept its highly modular C++ kernel with
a Python user interface. Moreover, it has been enhanced by automatic scripts that parse
configurations from other established packages, providing scientists with the ability to
rapidly set up their simulations.

1. Introduction

Molecular simulation methods [1, 2, 3, 4, 5, 6, 7, 8, 9] have facilitated the study,
exploration and co-design[10] of diverse materials. The functional and dynamic prop-
erties of biological and non-biological materials at diverse length and time scales can be
simulated with sequential coarse-graining methods [1, 11] or with concurrent coarse-
graining and atomistic methods [12, 13]. Such multiscale methods often involve coarse-
graining the atomistic degrees of freedom into effective degrees of freedom represent-
ing a collection of atoms, entire monomers or even molecules [1]. An important benefit
of multiscale methods is to achieve computational speed-up, which comes from both
the coarse-graining method itself and also from optimized algorithms [14].
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Within the past decades numerous researchers have contributed to simulations pack-
ages like GROMACS [15], LAMMPS [16], NAMD [17], ESPResSo [18], ESPResSo++ [6],
among many others. These packages have been devoted to the development of Molec-
ular Dynamics (MD) atomistic and coarse-graining simulations, giving rise to highly
parallelizable and flexible codes. The latter, flexibility, is the main design goal of
ESPResSo++. Thanks to the flexibility of the ESPResSo++ package, users can eas-
ily extend simulation methods in order to meet theoretically and experimentally driven
goals, such as in the case of multiscale simulations [7]. In addition, ESPResSo++
combines flexibility and extensibility with the computational requirements of high-
performance computing platforms via an MPI-based parallelization. One proof of
ESPResSo++’s flexibility for multiscale simulations is the implementation and exten-
sion of the Adaptive Resolution Scheme (AdResS) to its Hamiltonian-based version
(H-AdResS) and the addition of features such as the flexible spatial atomistic resolu-
tion regions approach[19]. ESPResSo++ can be easily used as a molecular dynamic
engine and combined with other algorithms, for example, to study complex chemical
reactions at the coarse-grained scale [20, 21], or to do reverse mapping from a coarse-
grained to an atomistic scale using an adaptive resolution approach [22, 23].

In this article we have selected two multiscale simulation methods that have been
implemented in ESPResSo++, namely, concurrent multiple resolution simulations us-
ing AdResS [24, 25, 26, 27] and the lattice Boltzmann technique which can be coupled
to particle-based simulations[28].

The Adaptive Resolution Scheme has been used for simulations using diverse tech-
niques, ranging from concurrent simulations of classical atomistic and coarse-grained
models [29, 30, 31, 12, 32, 33, 34, 35], to interfacing classical atomistic with the path-
integral formulation of quantum models [36, 37], as well as interfacing particle-based
simulations with continuum mechanics [38, 39]. Systems that have been simulated
with the Adaptive Resolution Schemes implementation in the ESPResSo++ package
include homogeneous fluids [29, 30, 31], biomolecules in solution[40, 32, 33] and
DNA molecules in salt solution [35]. In the present ESPResSo++ release, we come
closer to the requirements of adaptive resolution schemes in terms of scalability. Here
we also included the Heterogeneous Spatial Domain Decomposition Algorithm (HeS-
paDDA), namely a density-aware spatial domain decomposition with moving domain
boundaries, for AdResS and H-AdResS simulations, applicable to heterogeneous sys-
tems like nucleation, evaporation, and crystal growth.

The second simulation technique introduced in the present release of ESPResSo++
is the Lattice Boltzmann (LB) method, which accounts for hydrodynamic interactions
in fluids and can be applied to many problems, ranging from studies of turbulence on
the macroscale to soft matter investigations on the microscale. The latter includes hy-
brid simulations of particle-based systems, e.g. colloids or polymers, in a solvent. The
virtue of the LB method with respect to the explicit solvent treatment is its method-
ological locality and, as a consequence, computational efficiency. The LB-module of
ESPResSo++ can be used: (i) as a stand-alone method for studies of turbulence and liq-
uids driven by body-forces or (ii) in combination with molecular dynamics providing
correct hydrodynamics (in contrast to, e.g., Langevin thermostat).

On top of the highlighted methods for multiscale molecular simulations available
in ESPResSo++, this new release also introduces the implementation details of the
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hierarchical strategy for the equilibration of dense polymer melts. The hierarchical
equilibration strategy comprises a recursive coarse-graining algorithm with its corre-
sponding sequential back-mapping [41].

The contents of this publication are focused on the introduction of the new or up-
dated methods and algorithms within the second release of ESPResSo++. The adaptive
simulation schemes are described in Sec. 2 while the Lattice Boltzmann method is pre-
sented in Sec. 3. The hierarchical strategy for the equilibration of polymer melts is
described in Sec. 4. In Sec. 5 we present the deployment of the HeSpaDDA algorithm.
Sec. 6 provides information on how to contribute to the development of ESPResSo++.
Finally, sec. 7 reports on the integration of ESPResSo++ with other useful packages.

Regarding the development of ESPResSo++, we want to highlight its user-friendly
environment due to the Python interface used for the simulation scripts, and thus higher
degrees of freedom to interact with other scientific software parts of the Python com-
munity, e.g. NumPy [42], SciPy [43], scikit-learn [44], Pandas [45] and
PyEMMA [46]. Those wishing to get started with the package should visit our web-
page [47] or directly go to our GitHub repository [48]. Directions for downloading
and building ESPResSo++ are given in both references. Finally for more details of the
methods, algorithms or general code of ESPResSo++ please make use of our documen-
tation [49] and previous publication [6].

2. Adaptive resolution simulations

2.1. Introduction

Heterogeneous systems containing a wide range of length- and timescales can be
challenging to model using molecular simulation. This is because high-resolution,
chemically detailed models are needed to describe certain processes or regions of
interest; however, such models are also computationally expensive, and using them
to model the entire system can be prohibitive. One approach to tackle this prob-
lem is the use of multi-resolution simulation techniques, in which more expensive,
typically atomistic, and cheaper, typically coarse-grained models are used within the
same simulation box, allowing one to reach longer overall length- and timescales
[24, 50, 51, 52, 53]. In such techniques, a region in space is defined in which molecules
are modeled using atomistic detail, while coarse-grained models are used elsewhere
(see examples in Figure 1). The Adaptive Resolution Simulation (AdResS) methodol-
ogy deals with the coupling between atomistic (AT) and coarse-grained (CG) models
[54, 24, 12, 40, 55, 34, 53]. In this methodology, solvent particles can freely diffuse be-
tween AT and CG regions, smoothly changing their resolution as they cross a hybrid or
transition region. The AdResS approach can be useful for modeling a wide variety of
different systems, such as simple solutes in dilute solution and complex biomolecular
systems [56, 57, 58, 59, 60, 61, 35, 32, 33, 19, 62, 63, 64, 65].

ESPResSo++ provides full support of the AdResS methodology, and the ESPResSo++
AdResS implementation has been used to simulate systems ranging from homogeneous
fluids to biomolecules in solution [40, 32, 33, 34, 19, 65, 37, 66]. In the AdResS ap-
proach, the coupling of AT and CG models can take place via an interpolation on the
level of either forces or energies. Force-interpolation AdResS was included in release
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Figure 1: AdResS simulation of an atomistic protein and its atomistic hydration shell, coupled to a coarse-
grained particle reservoir via a transition region.[32]

1.0 of ESPResSo++. Energy-interpolation (known as Hamiltonian- or H-AdResS), as
well as the latest features are presented in this article.

2.2. Force interpolation
In AdResS, a typically small part of the system, the AT region, is described on the

AT level and coupled via a hybrid (HY) transition region to the CG region, where a
coarser, computationally more efficient model is used. The interpolation is achieved
via a resolution function λ(Rα), a smooth function of the center of mass position Rα

of molecule α. For each molecule, its instantaneous resolution value λα = λ(Rα) is
calculated based on the distance of the molecule from the center of the AT region. It is
1 if the molecule resides within the AT region and smoothly changes via the HY region
to 0 in the CG region (see, for example, Ref. [34]).

In the force interpolation scheme, the original AdResS technique [54, 24], two
different non-bonded force fields are coupled as

Fα|β = λ(Rα)λ(Rβ)FAT
α|β + (1− λ(Rα)λ(Rβ))FCG

α|β , (1)

where Fα|β is the total force between the molecules α and β and FAT
α|β defines the

atomistic force-field, which is decomposed into atomistic forces between the individual
atoms of the molecules α and β. Finally, FCG

α|β is the CG force between the molecules,
typically evaluated between their centers of mass. Note that in addition to the non-
bonded interactions usually also intramolecular bond and angle potentials are present.
As these are computationally significantly easier to evaluate, they are typically not
subject to any interpolation and therefore not further discussed here.

4
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2.3. Potential energy interpolation
Alternatively, the atomistic and the CG models can also be interpolated on the level

of potential energies. In the Hamiltonian adaptive resolution simulation approach (H-
AdResS) [12, 67, 68], the Hamiltonian of the overall system is defined as

H =
∑
α

∑
i∈α

p2
αi

2mαi
+
∑
α

{
λ(Rα)V AT

α + (1− λ(Rα))V CG
α

}
, (2)

wheremαi and pαi are, respectively, the mass and the momentum of atom i of molecule
α. The single-molecule potentials V AT

α and V CG
α are the sums of all non-bonded in-

termolecular interaction potentials corresponding to the AT and the CG model acting
on molecule α. We again omitted additional intramolecular interactions. To ensure
a smooth transition of the molecules between the low- and high-resolution regions,
one typically chooses a non-linear interpolation function λ, such as a squared cosine
[19, 34]. Furthermore, the CG potential is often parametrized to have an excluded
volume similar to the AT potential. This prevents overlapping particles and diverg-
ing forces when molecules travel between the regions. Alternatively, a force-capping
mechanism can be applied if necessary [33]. The intramolecular atomistic degrees of
freedom, which are subject to bonded and angular interactions, are either frozen when
a molecule resides in the CG region or they are simply integrated everywhere in the full
system including the CG region, since they are typically computationally very efficient
to evaluate.

The crucial difference between the force-based and the potential energy-based adap-
tive resolution scheme is an additional force term, dubbed drift force, arising in the
forces corresponding to the Hamiltonian in Eq. 2 (for details, see [12]). Both schemes
have characteristic advantages and disadvantages and which approach is better suited
for implementing the adaptive coupling depends on the application. On the one hand,
the force interpolation technique exactly preserves Newton’s third law, but it does not
allow a Hamiltonian formulation, does not conserve the energy [69], and it therefore
requires thermostatting for stable simulations [70, 69, 71, 72, 73, 74]. The method can
be used for the calculation of expectations in the canonical ensemble, which relies on
thermostating anyway, and even for the estimation of dynamical quantities in the AT
region when only the CG region is thermostated to dissipate the excess energy [32, 19].

H-AdResS, on the other hand, also allows microcanonical simulations and other ap-
proaches that require the existence of a well-defined Hamiltonian. However, it violates
Newton’s third law in the hybrid region and it features an additional undesired force
that must be explicitly taken care of. H-AdResS can be applied when the exact dynam-
ics, i.e. the exact preservation of Newton’s third law, is only relevant in the AT region.
Importantly, the additional force term that stems from the application of the position-
derivative on the resolution function λ(Rα) in Eq. 2 and that reflects the Helmholtz
free energy difference between the AT and the CG models is only a minor hindrance.
Its effect, pushing particles from one region to the other, can be efficiently canceled out
on average using so-called free energy corrections (also see Sec. 2.4). The H-AdResS
methodology is particularly advantageous when one is interested in energy-conserving
calculations or other simulations that rely on a Hamiltonian formulation, such as path
integral-based techniques (see Sec. 2.8) [12, 36, 37].

5
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Both adaptive resolution schemes have been successfully applied for simulations of
various different systems, including complex liquids, solutes in dilute solutions, large
biomolecules, polymers and quantum systems [56, 57, 75, 58, 59, 60, 61, 76, 77, 35,
32, 33, 19, 62, 63, 64, 65, 36, 37]. The increase in computational efficiency compared
to fully high-resolution simulations varies and depends strongly on the size and prop-
erties of the system, the employed AT and CG models, as well as the parallelization
and domain-decomposition scheme (also see Sec. 5). In previous applications, the in-
termolecular force calculations, the part of the simulation that is actually modified in
AdResS, were speeded up by factor of up to ≈ 9, while overall reported simulation
speed-ups are of the order ≈ 2-3 [33, 32, 36, 19, 37].

2.4. Free energy corrections and the thermodynamic force

Typical CG models have significantly different pressures compared to the AT ref-
erence systems [78, 79, 80, 81]. In adaptive resolution simulations, this leads to a
pressure gradient between the AT and the CG subsystems, which, in addition to the
drift force in H-AdResS, pushes particles across the HY transition region.

Therefore, a correction field must be applied in the HY region to enforce a flat den-
sity profile along the direction of resolution change. This compensation force coun-
teracts the pressure gradient and cancels the drift force in H-AdResS. An appropri-
ate correction can be derived, for example, via Kirkwood thermodynamic integration
[12, 82]. This is known as free energy correction and in particular useful in H-AdResS.
An alternative approach, frequently used in the force interpolation method, is to con-
struct a correction force directly from the distorted density profile obtained without
any correction and then refine it in an iterative fashion. This approach is known as the
thermodynamic force [83].

ESPResSo++ allows the straightforward inclusion of such correction forces and
also includes routines that can be used to calculate density profiles, pressures and en-
ergies, required for deriving these corrections.

2.5. Self-adjusting adaptive resolution simulations

Many complex systems, such as proteins, membranes and interfaces, do not feature
regular spherical or planar geometries. Furthermore, they undergo large-scale confor-
mational changes during simulation. Therefore, recently a scheme was derived that,
within the framework of forced-based AdResS, allows AT regions of any arbitrary
shape. Additionally, the AT region can change its geometry during the simulation
to follow, for example, a folding peptide [19]. This is established by associating sev-
eral spherical AT regions with many atoms of a macromolecule, such that their overlap
defines an envelope around the extended object. When it deforms, this shell adapts
accordingly.

This scheme is available in ESPResSo++ within the force interpolation approach
and in combination with the thermodynamic force.

2.6. Multiple time stepping in adaptive resolution simulations

Since CG potentials are typically significantly softer than AT force fields, the cor-
responding equations of motions can be solved using a larger time step. This suggests

6
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the use of multiple time stepping (MTS) techniques in adaptive resolution simulations,
in which both AT and CG potentials are present simultaneously. A RESPA-based MTS
approach [84, 85] is now available in ESPResSo++, which enables different time steps
for updates of the CG and the AT forces.

2.7. Thermodynamic integration

As explained above in Sec. 2.3, no global Hamiltonian can be defined in the force-
interpolation version of AdResS. Nevertheless, the potential-energy-based Thermody-
namic Integration (TI) approach to free energy calculations can be combined with
force-interpolation AdResS, as recently shown using simulations of amino acid sol-
vation in ESPResSo++.[66] This is because AdResS allows the sampling of local con-
figurations which are equivalent to those of fully atomistic simulations.

The TI implementation in ESPResSo++ can also be used to perform standard fully
atomistic free energy calculations, such as to calculate solvation free energies or ligand
binding affinities, among other examples.

2.8. Path integral-based adaptive resolution simulations

The path integral (PI) formalism can be used in molecular simulations to account
for the quantum mechanical delocalization of light nuclei [86, 85]. It is frequently used,
for example, when modeling hydrogen-rich chemical and biological systems, such as
proteins or DNA [87, 88, 89, 90, 91]. In the PI methodology, quantum particles are
mapped onto classical ring polymers, which represent delocalized wave functions. This
renders the PI approach computationally highly expensive (for a detailed introduction
see, for example, [85]).

In practice, the quantum mechanical description is often only necessary in a small
subregion of the overall simulation. Recently, a PI-based adaptive resolution scheme
was developed that allows to include the PI description only locally and to use efficient
classical Newtonian mechanics in the rest of the system [36, 37]. In this approach, the
ring polymers are forced to collapse to classical, point-like particles in the classical
region via a mechanism similar to the potential energy interpolation outlined above. In
the PI formalism the strength of the spring constants of the ring polymers representing
the quantum particles depends on the particles’ masses. A light particle has weaker
springs between the beads of the ring polymers, resulting in more extended ring poly-
mers, which correspond to more delocalized particles. Similarly, heavy particles have
very stiff springs leading to more collapsed ring polymers corresponding to more clas-
sical behavior. In the PI-AdResS scheme, one works in normal mode coordinates and
interpolates between light and much heavier masses for the degrees of freedom that
correspond to the ring polymers’ internal modes and ring vibrations, using a resolu-
tion function just like in the other adaptive resolution schemes described previously.
In that way, the ring polymers behave quantum-mechanically in the high-resolution
region and effectively classically in the low-resolution region. Importantly, when the
ring polymers are collapsed to point-like particles in the classical, low-resolution sub-
region, the potential energy calculation becomes significantly more efficient, since one
does not need to consider the different contributions from different ring polymer beads
anymore.

7
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(a) (b) (c)

Figure 2: (a) Good solvent, (b) Poor solvent and (c) Coarsening.

The method is based on an overall Hamiltonian description and it is consistent with
a bottom-up PI quantization procedure. It allows for the calculation of both quan-
tum statistical as well as approximate quantum dynamical quantities in the quantum
subregion using ring polymer or centroid molecular dynamics. The methodology is
implemented in the ESPResSo++ package and it also makes use of multiple time step-
ping. It has been used for the calculation of the structural and dynamical properties of
quantum-mechanically modeled water as well as liquid hydrogen. For a more technical
discussion of the scheme see Refs. [36, 37].

3. Lattice Boltzmann

Introduction
The Lattice Boltzmann (LB) method in ESPResSo++ was designed for efficient

simulations of phase-separating semidiluted polymer solutions. These solutions are
characterized by: (i) a low volume fraction φ < 5% of polymeric material with respect
to the system’s volume V and (ii) long polymer chains that start to overlap. These
requirements are satisfied for spatially large systems with only a few very long chains.
Since it is not computationally feasible to treat the solvent as explicit particles (their
number would be much greater than several millions) we rely on the lattice-based LB
methodology in the solvent treatment [92, 93, 94, 95, 96]. The polymer chains are
modeled by molecular dynamics (MD).

The hybrid LB/MD method is used to study the phase-separation of the polymer
solution upon the change of the solvent quality. Under good solvent conditions the
chains are extended coils, as the interactions between their monomers and the solvent
are favorable. This situation is shown in Fig. 2a. A quench into poor solvent regime
(Fig. 2b) initiates the collapse of the polymers and sets out a slow coarsening (Fig. 2c),
i.e. agglomeration of individually collapsed chains into multichain polymeric droplets.
The quenched system evolves on multiple time and length scales and demonstrates rich
dynamical properties.

8
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u1 u2

u3
u4

v

(a)

�j

�t
t

�t LB

(b)

Figure 3: (a) Schematic representation of the LB-to-MD coupling. The two-dimensional plot is used for
simplification. The implemented method is three-dimensional. (b) Time scales separation between the LB
and MD time scales.

Implementation details
The LB technique can be viewed as a version of coarse-graining of the solvent fluid

on a lattice. At every lattice site ~r and time t the fluid is modeled by a set of single-
particle distribution functions or populations fi(~r, t). The sites are connected in one
LB timestep, ∆tLB, by the finite set of velocities, ~ci. Mass and momentum density are
given by ρ =

∑
i fi and ~ji =

∑
i fi~ci, respectively . In ESPResSo++ we employ a

popular three-dimensional D3Q19 model with 19 velocity vectors ~ci [93].
The LB step is divided into collision and streaming parts. At first, the populations

collide according to the kinetic rules given by a collision operator. As the operator
we use the multiple-relaxation times scheme [97] that allows a straightforward intro-
duction of thermal fluctuations [13] relevant to soft matter research. In the streaming
phase the post-collisional populations are propagated to the neighboring sites according
to velocity vectors ~ci and the LB step is finished.

The coupling between the LB fluid and MD particles is done in a dissipative fash-
ion [28] as sketched in Fig. 3a. The force ~F exerted by a solvent onto an MD particle lo-
cated at position ~R and moving with velocity~v, is given by ~F = −ζ[~v−~u(~R)]+ ~Frand,
where ~Frand is the random force due to thermal motion, and the first term is the viscous
friction with an amplitude ζ. This term accounts for the velocity of the MD particle ~R
with respect to the velocity of the fluid at the position of the particle ~u(~R). The latter
is interpolated from the fluid velocities ~ui at the neighboring lattice sites.

To conserve total momentum of the LB/MD system a counterforce −~F should act
from the MD particle onto the LB fluid. We recast this force in terms of the momentum
change −~F = ∆~j/∆t, where ∆t is the MD timestep. The momentum change ∆~j of
the LB fluid is distributed to the neighboring lattice sites.

A time-costly LB step is done only after several MD steps [28], so we use ∆tLB/∆t =

5 or 10. In this approach, the forces ~F onto MD particles are calculated in every
MD step, while the concommitant momentum changes ∆~j at the LB sites are ac-
cumulated in memory. Firstly, they update the fluid velocities in every MD step:
~ui → ~ui + ∆~ji/ρi, where ρi and ~ji are the mass and momentum density of the LB
fluid at the site i. Secondly, the accumulated momentum changes are applied at the
LB collision step via correction of the collision operator. This algorithm is shown in

9
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Fig.3b. For a detailed description of the method we address the reader to Ref. [98].

Efficiency
The LB method of ESPResSo++ employs a regular lattice. Along with the ex-

treme locality of the algorithm (only neighboring sites are connected) it profits from a
straightforward but efficient parallelisation strategy realised by MPI (message-passing
interface). The hybrid LB/MD approach conserves hydrodynamics and is more feasible
for large simulations than explicit solvent treatment. Moreover, the timestep separation
between MD and LB realised in ESPResSo++ facilitates further speed-up, as a time-
intensive LB update is done only every several MD steps.

4. Hierarchical equilibration strategy for polymer melts

Introduction

To study the properties of polymer melts by numerical simulations, we have to
prepare equilibrated configurations. However, the relaxation time for polymer melts
increases, according to reptation theory, with the third power of the molecular weight
[99, 100, 101]. In fact, equilibrated configurations of high molecular weight polymer
melts cannot be obtained by brute-force calculation in a realistic time, i.e. the CPU time
for 1000 polymers consisting of 2000 monomers is roughly estimated as about 4.0×106

hours on a single processor (2.2GHz) on the basis of reptation theory [99, 100, 101]
and actual measured CPU time per one particle per step. Hence, an effective method
for decreasing the equilibration time is required. The hierarchical equilibration strategy
pioneered in Ref. [41, 102] is a particularly suitable way to do this.

The hierarchical equilibration strategy consists of recursive coarse-graining and
sequential back-mapping [41]. At first, a polymer chain, originally consisting of M
monomers, is replaced by a coarse-grained (CG) chain consisting of M/Nb softblobs,
mapping from each subchain with Nb monomers, represented as the model developed
by Vettorel [103]. In this model, the relaxation time doesn’t increase in accordance
with the reptation theory but rather Rouse theory, since the CG chains can pass through
each other. The degree of freedom of the system is Nb times less than that of the
microscopic model. Hence, the relaxation time of CG chain configuration is drastically
decreased. After equilibrating a configuration at a very coarse resolution, each CG
polymer chain is replaced with a more fine-grained (FG) chain. In this back-mapping
procedure, a CG blob is divided into several FG blobs. The center of mass (COM)
of the FG blobs coincides with the position of the CG blob’s center and is kept fixed
during the relaxation of the local conformation of the FG monomers within the CG
blob. Consequently, a microscopic equilibrated configuration can be reproduced by
sequential back-mapping.

The required functions of this strategy have been implemented into ESPResSo++.
To demonstrate that the system is equilibrated, we evaluate the mean square internal

distance (MSID), defined as 〈Rij/sij〉 where Rij is the distance between i and j-th
monomer on a chain and sij is the contour length between two monomers. The MSID
is the slowest physical property to equilibrate. Hence, other properties already have
their equilibrated value, when the MSID reaches the equilibrated form. Auhl’s work
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Figure 4: The schematic representation of hierarchical equilibration strategy. To decrease relaxation time,
the microscopic configurations are mapped to a coarse-grained soft blob model. After equilibrating configu-
rations at a very coarse resolution, the microscopic resolution is reproduced by sequential back-mapping.

Figure 5: The flowchart of the hierarchical equilibration strategy

[104] already obtained the equilibrated MSID form. We use their result as a reference
MSID. Fig. 6a shows the MSID equilibrated by the hierarchical strategy for M = 500,
1000 and 2000. All of them converge to the same line as Auhl’s result [104]. For
confirmation, we also present the pair correlation function g(r) for M = 500 obtained
from brute force calculation and our hierarchical strategy shown in Fig. 6b. They are in
quite good agreement with each other. Thus, we conclude that our hierarchical strategy
can fully equilibrate the polymer melts system.
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Figure 6: (a) The mean square internal distances with various polymerisation degree M. M = 500 (blue),
1000 (green) and 2000 (red). The dashed line stands for Auhl’s result [104]. (b) Pair correlation function
g(r) with the polymerisation degree M=500 taken from the hierarchical equilibration strategy (symbol) and
the brute force molecular dynamics simulations.

Efficiency
The efficiency of the hierarchical strategy for polymer melts can be estimated by a

comparison with the brute-force calculation. The CPU time for brute-force calculations
τbrute is described as τbrute ∼ N × M3 × (M/Ne) τmon, where Ne stands for the
number of monomers between entanglement. This value is obtained for the product of
the number of monomers, N ×M , and the reptation time, M2 × (M/Ne)τmon, [100].

The computational time for the hierarchical strategy τhier is defined as the sum-
mation of the computational time at various resolutions. Thus, we should estimate
the relaxation time at various resolutions. The relaxation time τ100 for the softblob at
Nb = 100 can be estimated as τ100 ∼ N × (M/100)

3
τblob. The relaxation time τ50

for the softblob at Nb = 50 is roughly estimated as τ50 ∼ N × (M/50) × 64τblob.
In a similar way, the relaxation time τ25 for the softblob at Nb = 25 can be esti-
mated as τ25 ∼ N × (M/25) × 64τblob. Practically, the calculation time τpush for
the push-off procedure and τmicro for the microscopic model have been defined as
650NMτmon and about 2NM × 104τmon respectively [105]. At all MD simulations
except the push-off procedure, the increment time dt is defined as the unit time di-
vided by 200. Only at the push-off procedure, dt is defined as the unit time divided
by 104. Thus, τpush should be multiplied by 50 when we estimate the computational
effort. Additionally, the cpu time for a step per particle per processor (2.2GHz) is
about 4.0×10−7 seconds for the microscopic model and about 4.0×10−5 seconds for
softblob models. Thus, τblob should be multiplied by 100 for estimating the efficiency.
Hence, the computational time τhier is estimated as τhier ∼ 100× τ100 + javascript :
void(0); 100× τ50 + 100× τ25 + 50× τpush + τmicro.

As a consequence, we can estimate the efficiency of the hierarchical strategy by the
ratio of τhier and τbrute represented as

τhier
τbrute

∼ 10−4
Ne
M

+ 4.2884× 104
Ne
M3

. (3)

For example, after substituting M = 2000 and Ne = 100 to τhier/τbrute, we obtain the

12
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concrete value of the ratio
τhier
τbrute

≈ 1

1.9× 103
. (4)

Please note that the efficiency of the hierarchical strategy increases with increasing M .

5. Heterogeneous Spatial Domain Decomposition Algorithm

Introduction
Simulating heterogeneous molecular systems on supercomputers requires the con-

ception and development of efficient parallelization techniques or Domain Decompo-
sition (DD) schemes [16, 15, 106]. In the first release of ESPResSo++ the Domain
Decomposition scheme was a combination of the Linked-Cell-List algorithm (LCL)
with an homogeneous-spatial Domain Decomposition. Such schemes are applied to
traditional molecular simulations, for instance in dense homogeneous polymer melt
systems [107, 105, 41]. While traditional molecular simulations are performed with the
same resolution for all molecules in the simulation box; in heterogeneous systems [14],
we tackle different resolutions (densities). Spatially the simulation box is typically
comprised by subregions with different resolutions, namely, for multiscale simulations
the coarse-grained and the atomistic/hybrid subregions (see Figure 7(a)). In terms of
computational costs, the most expensive regions are the ones containing atomistic de-
tails (higher resolution) followed by the regions using coarse-grained models [30, 31]
or ideal gas [33] which are significantly cheaper.

Figure 7: AdResS simulation of an atomistic protein and its atomistic hydration shell, coupled to a coarse-
grained particle reservoir via a transition region [32]. (a) Illustrates all details of the multiscale system
subregions. The low-resolution is in gray while the high-resolution is marked by its radius and a white
circle. The transition or hybrid region is also marked between the white and orange circles. (b) Scheme
of interactions load (computationally exhaustive) as for the subdomains homogeneous distribution of the
protein system described above and (c) shows the communication schemes derived from an imbalanced load
distribution.
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The challenges faced by domain decomposition algorithms arise from two factors,
namely, the interactions per subdomain and the communication between subdomains.
An example of the inter-domains communication constraint is the imbalanced amount
of data communicated between the fully atomistic and hybrid regions in comparison
to the CG regions (see Figure 7(c)). In addition, the interactions per domain will be
imbalanced if an homogeneous grid decomposes equally the system as shown in Fig-
ure 7(b). This is mainly because the distribution of interactions per subdomain could
differ in orders of magnitude depending on the spatial heterogeneous mapping ratio as
defined in Equation 5.

RresSH =
Nres
HR

Nres
LR

(5)

where Nres
HR is the number of entities in the high-resolution region that corresponds

to one entity in the low-resolution one Nres
LR . For example mapping the atomistic water

molecule to the coarse-grained model can usually result in a RresSH = 3 [14] (See also
Figure 8(a)).

To tackle the aforementioned limitations (illustrated in Figures 7(b) and 7(c)),
the updated release of ESPResSo++ includes an implementation of the Heterogeneous
Spatial Domain Decomposition Algorithm, for short HeSpaDDA [14]. In a nutshell,
HeSpaDDA will make use of a priori knowledge of the system setup, meaning the re-
gion that is computationally less expensive. This inherent load-imbalance could come
from different resolutions or different densities. The algorithm will then propose a non-
uniform domain layout, i.e. domains of different size and their distribution amongst
compute instances. This can lead to significant speedups for systems of the afore-
mentioned type over standard algorithms, e.g. spatial Domain Decomposition [16] or
spatial and force based DD [106].

Algorithm description
The proper allocation of processors in heterogeneous molecular simulations is vital

for the intrinsic computational scaling and performance of the production run. More-
over, the whole simulation performance is constrained to the initial domain decompo-
sition and hence the correspondence of the number of processors to different resolution
regions of the initial given configuration. An example of such a heterogeneous initial
domain decomposition is provided by a multiscale simulation of water, where the sys-
tem is decomposed in the x-axis by 8 processors and the homogeneous and HeSpaDDA
cases are depicted one next to the other(see Figures 8(b) and 8 (c)). Also the algorithm
flowchart can be found in Figure 8(d).

Once the processors allocation has been built, an initial cells distribution per sub-
domain is created to find the maximum number of cells to be used per region. Such
a distribution can be done either symmetrically and non-symmetrically. The symmet-
ric cells distribution is triggered if the heterogeneous regions can be decomposed as
mirrors within half of the box and the non-symmetric distribution occurs if the hetero-
geneous regions cannot be mirrored within the simulation box. Within those functions,
control statements check if the number of processors to be used are even or odd, as well
as the number of cells in each dimension. In case there are still non-distributed cells the
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Figure 8: AdResS simulation of water (a) coarse-grained (low-res. region), Hybrid (TR-region) and the
Atomistic regions are illustrated. The two latter make up the high-res. region. (b) depicts the processor al-
location for the homogeneous one-dimensional domain decomposition, while (c) for HeSpaDDA. (d) shows
the processors allocation flowchart of HeSpaDDA.

symmetric and non-symmetric functions will call a pseudo-random weighted cells dis-
tribution for the remaining ones. As a final step the algorithm verifies if the performed
DD is scalable, and suggests a possible number of cores to perform the heterogeneous
simulation (a Python function named cherry picked processors cherrypickTotalProcs).
A detailed description of the processors allocation and cells distribution algorithms are
provided in a previous article [14] and all python scripts can be found in the referenced
code [48].

Implementation in ESPResSo++
The implementation of HeSpaDDA in ESPResSo++ has involved the creation of

new data structures, for the number of cells inhomogeneously distributed in each sub-
domain as depicted in Figure 8(C). Such data structures are linked to an iterative al-
gorithm that allocates processors to the simulation box according to the resolution of
regions i.e. fully atomistic, coarse-grained, among others. The processors allocation
algorithm flowchart is described in Figure 8(d).
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6. Development workflow

Since the last release [6] we have moved to GitHub hosting and hence from Mer-
curial to Git https://git-scm.com/ as a version control system. We have also set a new
development workflow, fork-and-branch, which is commonly used on the GitHub plat-
form [108].

This approach requires two things from the developers: fork the repository and use
pull requests to ask for changes in the code base. Basically, every new feature is devel-
oped on a branch of the developer’s fork repository. Once a feature reaches completion,
a merge request is sent to the default branch via GitHub’s pull request mechanism. We
use master branch as the default development branch. The pull request is then re-
viewed by one of the ESPResSo++ core developers. Usually, minor improvements like
e.g. adding tests or documentation are requested from the feature developer. Once all
the newly added and existing tests pass, the feature is merged into the master branch.

This whole workflow is supported by continuous integration (CI) tests[109], mean-
ing before the pull request is accepted, it has to fulfill three conditions: properly build,
pass all unit-tests and do not decrease code coverage.

The build process is pursued under three Linux distributions: Ubuntu (latest and
long-term-support), Fedora, and OpenSUSE. Moreover, every change is checked against
two different compilers, gcc [110] (versions 4.7, 4.8, 4.9) and clang [111] as well as
the internal and external Boost library [112].

As for the tests, we use two types, one that tests particular features, so-called unit-
tests. The second set, the regression tests, run against existing reference data. CI gives
the developers the advantage that even before the actual code review within the pull
request it is easy to see if any changes broke existing tests.

The last condition is the code coverage, which describes the percentage of code
lines that were tested with unit-tests. For that, we use the external tool (https://codecov.io/).
The current approximate code coverage, calculate by that tool, is 44%.

If all conditions are matched then the pull request can be accepted. In addition,
we use CI to build different pieces of documentation including the website, the Doxy-
gen [113] documentation of the code and a pdf of the user’s guide. The newly gen-
erated documentation is automatically deployed to http://espressopp.github.io/. This
documentation is available to the developer to support the usage of the most recent de-
velopment version. This continuous deployment allows to not waste any time using the
possibly outdated documentation of the last release. Moreover, the latest master ver-
sion is deployed and released to Docker Hub for users who prefer to test ESPResSo++
without building it themselves.

The release versions of ESPResSo++ follow the idea of semantic versioning [114]
and the releases workflow ties into it very easily. In a nutshell, fixes and small new
features that don’t change the application interface can go into ”stable” and hence only
trigger a minor release, while big refactors that introduce a new feature or break back-
ward compatibility of the application interface go into a major release. After each
major release, a stable branch is created and git tags on that branch mark the individual
minor releases. Bugs and hotfixes are merged (via the same pull request workflow)
into the stable branch directly. If necessary, the stable branch is merged into the master

16

https://git-scm.com/
https://codecov.io/
http://espressopp.github.io/


M
ax

 P
la

nc
k 

In
st

itu
te

 fo
r P

ol
ym

er
 R

es
ea

rc
h 

– 
Au

th
or

’s 
M

an
us

cr
ip

t

branch occasionally to include all fixes into the master branch as well. Here, we present
version 2.0 of the package.

Moreover, in the spirit of reproducibility, we have deposited the release on the
zenodo.org respository[115].

7. Integration with other packages

The ESPResSo++ can easily be used with other software packages, primarily due to
its internal design that allows it to work as nothing more than a Python module. In this
way, ESPResSo++ can be called from any other Python code, even from Jupyter [116]
during an interactive session. This allows using ESPResSo++ as an educational tool
during hands-on sessions.

The recent release of ESPResSo++ brings support for the new file format H5MD [117]
that uses HDF5 [118] storage. The H5MD file format is suitable to hold information
about the simulation details in a self-descriptive, binary and portable format. Along
with the particle positions, with this file format it is possible to store information of
box size, particle types, mass, partial charges, velocity, forces and other properties like
software version, integrator time-step and a seed of random number generator. To-
gether with the information about particles, the H5MD can store information about the
connectivity, in a static or dynamic manner. The static information comprises bonds,
angles and dihedrals which are stored at the beginning of the simulation and they would
not be updated during the run. Moreover, a dynamic information storage can track the
changes in the bonds, angles and dihedrals also during the simulation. This can be very
important, e.g, when we use ESPReSo++ to perform chemical reactions [20, 21]. By
this, it is possible to share not only results of the simulation but also certain details that
allow reproducing these results. In addition, HDF5 storage natively supports parallel
input-output (I/O) operations which allows performing efficient parallel simulations.

Apart from the H5MD file format, ESPResSo++ has trajectory writers to GRO-
MACS [119], XTC, XYZ and PDB file formats. The simulation details can also be
stored in LAMMPS [16] file format. When it comes to reading, the GROMACS topol-
ogy and trajectory file formats are supported, hence it is possible to run directly a
simulation from those input files. This is also true of LAMMPS input files. Because
of the variety of file formats that are supported by ESPResSo++, the integration with
existing packages is very easy, for example, VOTCA 1.3 [11] package can cooperate
with ESPResSo++ out-of-the-box.

8. Examples and documentation

All features and their implementation are described in detail in the ESPResSo++
documentation [49]. Furthermore, ESPResSo++ comes with many example scripts [120]
and tutorials that cover all methodologies and demonstrate to the user how to set up
various types of simulation systems in practice.
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9. Conclusions

In this article we have presented several state-of-the-art multiscale molecular sim-
ulation methods that have recently been implemented in the ESPResSo++ package.
Specifically, we discussed the latest advancements of adaptive resolution simulations
as well as another multiscale scheme for coupling lattice Boltzmann and molecular
dynamics techniques. Furthermore, a hierarchical strategy for equilibrating polymer
melts and an accompanying domain decomposition scheme, which have also been im-
plemented into ESPResSo++, were presented. The deployment of those methods and
algorithms shows the flexibility and extensibility offered by the software package for
method development of advanced molecular simulations techniques.

From the software development viewpoint, we are providing scientists from the ma-
terial and biomolecular scientific communities a computational tool that can be used
out-of-the-box from simple Python scripts and allows exploring diverse molecular sys-
tems in polymer research, membranes, proteins, crystallization processes, evaporation,
among others. This update is also very useful for the prototyping of new theoretical
concepts and molecular simulation method development since it includes proven func-
tionalities like: (i) extension of new simulation methods on top of the presented ones, as
shown in Section 2, (ii) the development of new algorithms in Section 4 and Section 5,
or (iii) the combination of multiple scales and multiple methods like the development
shown in Section 3.

We have covered many possible applications of the recent methods and algorithms
included within the updated ESPResSo++, in particular for the areas of soft matter sci-
ence, as illustrated within each section of this article. Selected applications of the new
ESPResSo++ release have been published and are also referenced within this release
communication. We note that these improvements make the simulation of many dif-
ferent systems feasible, from short proteins to huge polymer melts, passing through
advanced path integral multiscale systems.

On top of the aspects described above, the ESPResSo++ package is open source
(published under the GNU General Public License (GPL) version 3) and hence offers
the molecular simulation community the possibility of extending the package and/or
adapting methods to their research interests. Moreover a friendly developers environ-
ment, including recent developers software tools, mailing lists, repository management,
an improved documentation and even parsing of input files from other MD packages,
aims to smooth the transition from such packages to ESPResSo++.

10. Acknowledgments

T. Stuehn, N. Tretyakov and H. V. Guzman acknowledge financial support under
the project SFB-TRR146 of the Deutsche Forschungsgemeinschaft. H. Kobayashi ac-
knowledges the European Unions Horizon 2020 research and innovation program un-
der the grant agreement No. 676531 (project E-CAM). A.C. Fogarty acknowledges
research funding through the European Research Council under the European Unions
Seventh Framework Programme (FP7/2007-2 013) / ERC grant agreement no. 340906-
MOLPROCOMP. J. Krajniak acknowledges “Strategic Initiative Materials” in Flanders

18



M
ax

 P
la

nc
k 

In
st

itu
te

 fo
r P

ol
ym

er
 R

es
ea

rc
h 

– 
Au

th
or

’s 
M

an
us

cr
ip

t

(SIM) under the InterPoCo program and VSC (Flemish Supercomputer Center; Her-
cules Foundation and the Flemish Government - department EWI). This work has been
partially authored by an employee of Los Alamos National Security, LLC, operator
of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396
with the U.S. Department of Energy. The United States Government retains and the
publisher, by accepting this work for publication, acknowledges that the United States
Government retains a nonexclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce this work, or allow others to do so for United States Government
purposes. C. J. thanks Los Alamos National Laboratory for a Directors Postdoctoral
fellowship supporting the early stage of this work. Assigned: LA-UR-18-XXXXX.

11. References

References

[1] Kremer, K. and Müller-Plathe, F., Molecular Simulation 28 (2002) 729.

[2] Attig, N., Binder, K., Grubmüller, H., and Kremer, K., editors, Computa-
tional Soft Matter: From Synthetic Polymers to Proteins, NIC Lecture Notes,
volume 23, Forschungszentrum Jülich, 2004.
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